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Abstract—The National Capital Territory (NCT) of India,
Delhi, is home to New Delhi, the country’s capital. Being a
significant political and economic hub, Delhi experiences unique
considerations in terms of power consumption. As of May 31st,
2023, the highest recorded power demand in Delhi occurred on
June 29th, 2022, reaching a peak of 7770 MW. The dataset used
in this paper is the daily Power-Supply-Position (PSP) reports
generated by the NLDC, GRID Energy Sector, India which is
a division of the Ministry of Power. This paper forecasts the
maximum demand produced by Delhi taking in consideration
of the Producers side by using various Machine Learning
Algorithms with different pre-processing techniques such as data
Imputation and Transformation Techniques and MAPE (mean-
absolute-percentage-error) is used as a metric to evaluate models.
The results suggest that Gradient Boosting Regressor with 7
days shift feature extraction gives the highest accuracy through
Linear-Interpolation-imputation for univariate data.

Index Terms—Machine Learning(ML), Deep Learning (DL),
Demand Forecasting, Indian GRID Energy Sector, Time Series
Forecasting, Delhi.

I. INTRODUCTION

The two most important sectors of the Indian Energy GRID
are maintained by POWERGRID [2] which has the objectives
of running the GRID efficiently and installing transmission
lines etc... and the other being the National Load Dispatch
Center (NLDC) [1] which is focussed on the Supervision over
the Regional Load Dispatch Centres, Scheduling and dispatch
of electricity over inter-regional links in accordance with grid
standards specified by the Authority and grid code specified
by Central Commission in coordination with Regional Load
Dispatch Centres, Monitoring of operations and grid security
of the National Grid, etc...

India’s Statewise Per-capita of Power raised to 1974.4 Kilo-
Watt Hours in Delhi in 2018-2019 and all India’s 1115.3 Kilo-
Watt Hours in 2021-2022 is the highest per-capita of power
which is recorded to date according to Reserve Bank of India
(RBI) [5]. Statistically, the Fluctuations in Power/Electricity
may affect many factors in the Economy and vice-versa.

To address the challenge of Demand Forecasting, our ap-
proach begins with time series forecasting, specifically ex-
ploring the potential of Auto-Regression Integrated Moving
Average (ARIMA). Following a thorough examination of Time
Series Forecasting methods, including ARIMA and Seasonal

ARIMA (SARIMA), and guided by the findings in our previ-
ous paper [11], where we achieved the lowest recorded error
score of 15.717, we transition to the realm of Machine Learn-
ing. Here, we employ manual feature extraction strategies to
further reduce the error rate and enhance forecasting accuracy.

This paper contains five sections. Section-2 reviews different
forecasting techniques that different authors have adopted.
Section-3 describes the methodology that has been adopted
in this paper. Section-4 focuses on Data Preparation and Data
Pre-processing, encompassing imputation and transformation
techniques. In Section-5, Machine Learning techniques will
be explored, incorporating various types of Feature Extraction
techniques to identify interactions and relationships between
variables.

II. RELATED WORK

For Demand Forecasting, the study adopts a combination
of three distinct methodologies: (i) statistical methods, which
leverage historical data and time-series analysis, and (ii) ma-
chine learning, which utilizes advanced algorithms to identify
intricate patterns and relationships within the data. (iii) deep
learning, which utilizes Long Short Term Memory (LSTM)
and Artificial Neural Network (ANN).

For the Classical methods like Time-series Forecasting
methods, Carlos et al [7] analyzed a time series dataset for
Brazilian Electricity Demand Forecasting and divides Brazil
into two regions and forecasts the Electricity demand accord-
ing to using ARIMA models. Kakoli et al. [8] used a Seasonal
ARIMA model to forecast electricity demand for Assam in
the Northeast Region, achieving MAPE of 10.7%. Srinivasa
et al [9] provided a forecasting method that is formulated
monthly for the whole of India without considering the states
and regions. It has been found that the MSARIMA model
outperforms CEA forecasts in both in-sample static and out-
of-sample dynamic forecast horizons in all five regional grids
in India.

For Machine Learning methods, Christos et al. [14] focused
on forecasting Peak Demand from the Producer’s side using a
dataset from three regions in the Netherlands. They compared
methods like ARIMA, Ridge Regression, and Lasso Regres-
sion, and found that the Bi-directional LSTM model performed
the best. Saravanan et al. [13] devised a model based on 64



fuzzy logic neural networks using per-capita Gross Domestic
Product (GDP), population, and Import/Export as variables,
achieving a low MAPE of 2.3. Mannish et al. [12] proposed
an Ensemble Approach for the Distribution Companies (DIS-
COMs) in Delhi post-Covid, combining XGBoost, LightGBM,
and CatBoost algorithms, with an average MAPE of 5.0.
Banga et al. [10] compared Machine Learning Algorithms
for electricity demand forecasting using a dataset with 29
attributes, highlighting the superiority of the Facebook Prophet
model with MAPE scores of 0.4 for daily and 0.2 for hourly
datasets.

Anil et al [25] uses Levenberg-marquardt back propagation
algorithm ANN on day ahead Short term load Forecasting
on the state of Uttar Pradesh trained on hourly data with the
MAPE score of average MAPE 3.05, This work suggests to
use the ANN model to check with our dataset too. Navneet
et al [26] uses the New Delhi Adani Enterprises Ltd (ADEL)
data to forecast the load by using different Neural Network Ar-
chitectures in which ELMANN Neural Network Architecture
has given the good accuracy. Dharmoju et al [27] provided a
sector of Residental buildings by the United States Dataset by
using LSTM model for monthly forecasting. Shaswat et al [28]
uses a Temporal Fusion Architecture to capture the interactions
which are scaled between 0 and 1 for daily data which acheives
4.15% more than the existing models and this is for the whole
India which is not region specific. Saravanan et al [29] uses the
economic factors like GDP, national income, consumer price
index etc.. with that they used Principle component Analysis
following with ANN which gives the highest accuracy of
MAPE score 0.43. Vishnu et al [30] concentrates on the work
on Renewable Energy Resources devised two major LSTM
models.

III. PROPOSED METHODOLOGY

Figure 1 illustrates the structured process flow of this paper.
The initial step involves data extraction from the daily reports
supplied by the National Load Dispatch Center (NLDC) [3],
which are predominantly in the Portable Format Document
(.pdf) file format. Given our specific focus on the Union
Territory of India, Delhi, we employ the keyword ”Delhi” to
facilitate the conversion of data within the PDF files into a
text format for each individual file. Subsequently, we proceed
with data filtration, isolating and extracting the pertinent
information related to the keyword ”Delhi.” This refinement
culminates in the creation of the final dataset, formatted as a
Comma Separated Values (.csv) file.

After the final dataset has been generated, we employ
imputation techniques to address the missing data on days
when the report was not generated by the NLDC. We utilize
imputation methods, including mean, median, mode, and linear
interpolation, to fill in the null values within the dataset.
Additionally, we conduct a comparative analysis of these
imputation techniques with the original dataset, in which
all instances of missing data are removed (referred to as

Fig. 1: Flowchart of forecasting process based on Feature
Extraction Strategies

the ’dropna dataset’). This comparative methodology provides
valuable insights into which dataset configuration offers the
highest accuracy when forecasting daily demand.

Deep Learning algorithms like LSTM and gated recurrent
units (GRU) work well for large datasets and for multivariant
analysis [25], However, considering that the final dataset
encompasses daily data from 2013 to 2023, which may be
relatively limited in data points, it necessitates manual feature
extraction strategies. For this reason, we opted to employ
Machine Learning techniques, utilizing four distinct Regres-
sion algorithms: Lasso Regression (LR), Ridge Regression
(RR), Gradient Boosting Regressor (GBR), and Support Vector
Regressor (SVR). We selected these four algorithms due to
their simplicity and the fact that they are grounded in four
different working principles. We evaluated their performance
using the Mean Absolute Percentage Error (MAPE) as a
metric.

As elucidated in Figure 1, we have organized our feature
extraction into three primary categories. The first category,
Basic Feature Extraction, encompasses fundamental statistical
features like mean, max, min, and standard deviation (std).
The second category, Percentile Feature Extraction, offers a
wider perspective by including features across the 1st to the
99th percentiles, providing insights into data distribution. The
third category, Date Features, introduces attributes such as the
month of the year and the day of the week, extracted from the
available data. This paper provides an overview of the various
feature extraction strategies and their impact on forecasting
accuracy. However, it’s important to note that there is room
for further exploration and refinement, especially in the realm
of combined feature extraction techniques.



Fig. 2: Different types of Vizualizations for the data extracted
from the output .csv file

IV. DATA PREPARATION AND STATISTICS

In this study, we utilized daily generation reports spanning
from April 1, 2013, to May 31, 2023, generating a total
of 3713 data points. To ensure a robust evaluation of our
forecasting algorithms, we divided the dataset into three major
segments as shown in Table 1. This division allows for the
training of all the algorithms on the training data and sub-
sequently testing their performance on the testing data, from
which MAPE scores were obtained. These MAPE scores were
pivotal in ranking the performance of our algorithms. Given
the relatively small dataset size, we adopted a monthly co-
herence approach to segment the data effectively. Specifically,
we used the most recent month for testing purposes and the
subsequent month for validation purposes. This methodology
optimizes the utility of the available data and ensures that
our algorithms are rigorously evaluated for their forecasting
capabilities.

TABLE I: Data Division Methodology

April 2013 to April 2023 Train
May 2023 Test
June 2023 Validation

The dataset provided by the Dataset Generation Algorithm
has 8 features Date (YYYY-MM-DD), Max. Demand met dur-
ing the day (MW), Shortage during maximum Demand (MW),
Energy Met (MU), Drawal Schedule (MU), OD(+)/UD(-)
(MU), Max OD (MW), Energy Shortage (MU). From these
columns, we select the Date (YYYY-MM-DD), Max.Demand
met during the day (MW). We restrict ourselves for univariant
analysis of the data so, we use the column of Date and
Max.Demand met during the day (MW). The total number of
data points which are available from the daily reports is 3640
with 73 missing data points. This dataset is subjected to pre-
processing which generates multiple datasets from Imputation
and Transformation Techniques.

Figure 2 offers a comprehensive dataset analysis by present-
ing six distinct visualization plots: the Line chart, Area chart,
Bar chart, Box plot, Scatter plot, and Histogram. Figure 3
elucidates the dataset’s seasonality aspect, providing valuable
insights into its temporal patterns. Table 2 depicts the statistics

Fig. 3: Seasonal decomposition of the Maximum Demand
column with trend and Residuals

TABLE II: Data Statistics

Number of Columns 8
Number of Datapoints 3640

Mean 4356.58
Standard Deviation 994.5

Minimum Value 2139
Maximum Value 7770

of the final dataset where we can see that many of the
datapoints are missing. We use four imputation techniques:
mean, median, mode, and interpolation. By using these meth-
ods, we generate five datasets: dropna-dataset (by dropping
all null values), mean-dataset, median-dataset, mode-dataset,
and interpolation-linear-dataset. Transformation techniques are
also applied, such as sliding window mean. Statistical models
like time-series forecasting and machine learning models are
applied to each of these datasets, as discussed in the further
sections of this paper.

V. MACHINE LEARNING ALGORITHMS

This section explains the Machine Learning Algorithms
which has been used in this paper. The models considered
are Ridge Regression, Lasso Regression, Gradient Boosting
Regression, and Support Vector Regression. For the latter
subsections, we will be explaining each one and how can it
be applied to Time series data.

A. Ridge Regression

Ridge Regression, often used in applications like time series
data analysis [16], serves as a valuable tool for improving lin-
ear regression. It helps tackle issues such as multicollinearity,
which arises when predictor variables are highly correlated,
and it prevents overfitting. Ridge Regression introduces a
parameter λ that’s tailored to the dataset, influencing the
linear regression model. The Usual Linear Regression model
which is represented according to Equation 1 where y is



the dependent variable, β0, β1, β2, . . . , βn are the coefficients
of the predictor variables (features), x1, x2, . . . , xn are the
predictor variables and ε is the error term.

y = β0 + β1x1 + β2x2 + . . .+ βnxn + ε (1)

Cost Function =
∑

(yi − ŷi)
2 + λ

∑
β2
i (2)

The goal of Ridge Regression is to minimize the following
cost function as shown in the Equation 2 where

∑
(yi − ŷi)

2

is the sum of squared errors (similar to the Ordinary Least
Squares method),

∑
β2
i is the sum of squared coefficients

and λ (lambda) is the regularization parameter. It controls
the strength of the regularization. Higher values of λ lead to
stronger regularization, which shrinks the coefficients closer
to zero. with L2 regularization. The Ridge Regression model
aims to find the coefficients β0, β1, β2, . . . , βn that minimize
this cost function. The regularization term λ

∑
β2
i encourages

the model to keep the coefficients small, which helps in reduc-
ing the impact of multicollinearity and preventing overfitting.

B. Lasso Regression

Lasso Regression, or Least Absolute Shrinkage and Se-
lection Operator Regression, is a variant of linear regression
that incorporates L1 regularization into the cost function. Its
appeal lies in its ability to enhance predictive accuracy and
foster model interpretability. These LASSO-based methods
are not only adept at addressing model uncertainty but also
excel in improving forecasting accuracy by accounting for
non-pervasive shocks. Particularly in the realm of Dynamic
Factor models, especially when applied to time series data,
Lasso Regression has established its efficacy in out-of-sample
forecast evaluations [17]. The process of solving Lasso Regres-
sion involves employing diverse optimization techniques, such
as coordinate descent or subgradient descent. Through this
methodology, the final coefficients achieve a delicate balance
between effective data fitting and feature sparsity, with certain
coefficients being driven to zero.

CostFunction =
∑

(yi − ŷi)
2 + λ

∑
|βi| (3)

The Lasso Regression model aims to find the coefficients
β0, β1, β2, . . . , βn that minimize this cost function which is
shown in Equation 3, where

∑
(yi − ŷi)

2 is the sum of
squared errors (similar to the Ordinary Least Squares method),∑

|βi| is the sum of the absolute values of the coefficients,
and λ (lambda) is the regularization parameter. It controls
the strength of the regularization. Higher values of λ lead to
stronger regularization. The unique aspect of Lasso is that the
regularization term λ

∑
|βi| encourages some coefficients to

become exactly zero. This means that Lasso not only fits the
data but also performs feature selection, effectively eliminating
irrelevant predictors.

C. Gradient Boosting Regressor

Gradient Boosting (GB) learns an additive expansion of
simple basis-models. This is accomplished by iteratively fitting
an elementary model to the negative gradient of a loss function
with respect to the expansion’s values at each training data-
point evaluated at each iteration. Notably, Alexandros et al.
introduced a GB methodology, as documented in their work
[18], which found application in the domain of financial time-
series modeling. The goal of Gradient Boosting Regression is
to find a predictive model, denoted as F (x), that maps the
features X to the target y. The objective in Gradient Boosting
is to find the optimal values of βi and hi(x) that minimize
a loss function, typically a mean absolute percentage error
(MAPE) loss function. This is achieved through an iterative
process. At each iteration, a new weak learner is trained to
capture the errors or residuals made by the ensemble model
up to that point.

F (x) =

M∑
i=1

βihi(x) (4)

This model is constructed as a weighted sum of M individ-
ual decision trees, each referred to as a ”weak learner.” The
ensemble model can be represented as shown in Equation 4,
where X represents the feature matrix with n samples and
m features. It can be written as X = {x1, x2, . . . , xn}, y
represents the target vector containing the actual values for
the n samples, F (x) is the overall prediction for a given input
x, M is the total number of weak learners (decision trees)
used in the ensemble, βi represents the weight or contribution
of the i-th decision tree, and hi(x) is the prediction made by
the i-th decision tree for input x.

D. Support Vector Regression

Support Vector Regression (SVR) is a variant of Support
Vector Machines used for regression tasks. It aims to find a
function f(x) that predicts continuous output values, given
input features x. The objective is to minimize the regularized
loss while ensuring that the errors. The SVR model can be
expressed for the timeseries data [19] as shown in the equation
5 where yt is the target value to be predicted at time t, Xt

represents the input features at time t, f(Xt) is the predicted
value at time t, w is the weight vector, ϕ(Xt) represents the
feature mapping, often involving kernel functions to handle
non-linearity and b is the bias term.

yt = f(Xt) = ⟨w, ϕ(Xt)⟩+ b (5)

In time series forecasting, input features may include lagged
values of the target variable and other relevant time series or
exogenous variables. The choice of kernel function and the
hyperparameters, such as C and ε, are critical considerations
in building an effective SVR model for time series forecasting.



TABLE III: ML model Comparison Results for Null dropped (dropna)

Feature Extraction Window Size Prev Days Data Ridge MAPE Lasso MAPE GBR MAPE SVR MAPE

shift features 10 30 0.187 0.178 0.131 0.186
shift+date features 10 30 0.187 0.178 0.131 0.186

shift features 0 30 0.187 0.178 0.131 0.186
shift+date features 0 30 0.187 0.178 0.131 0.186

shift features 10 7 0.172 0.150 0.152 0.204
shift+date features 10 7 0.172 0.152 0.144 0.213

shift features 0 7 0.061 0.061 0.059 0.120
shift+date features 0 7 0.060 0.060 0.059 0.134
percentile features 10 30 0.127 0.159 0.182 0.226
percentile features 0 30 0.136 0.136 0.141 0.147
percentile features 10 7 0.161 0.108 0.159 0.208
percentile features 0 7 0.090 0.090 0.081 0.097

basic features 10 30 0.185 0.127 0.181 0.226
basic features 0 30 0.185 0.127 0.180 0.226
basic features 10 7 0.175 0.102 0.152 0.212
basic features 0 7 0.175 0.102 0.152 0.212

TABLE IV: ML model Comparison Results for Mean Imputation

Feature Extraction Window Size Prev Days Data Ridge MAPE Lasso MAPE GBR MAPE SVR MAPE

shift features 10 30 0.182 0.173 0.132 0.184
shift+date features 10 30 0.182 0.173 0.132 0.184

shift features 0 30 0.182 0.173 0.132 0.184
shift+date features 0 30 0.182 0.173 0.132 0.184

shift features 10 7 0.172 0.152 0.145 0.201
shift+date features 10 7 0.173 0.154 0.131 0.209

shift features 0 7 0.065 0.065 0.063 0.120
shift+date features 0 7 0.063 0.063 0.058 0.134
percentile features 10 30 0.131 0.186 0.078 0.226
percentile features 0 30 0.134 0.134 0.129 0.147
percentile features 10 7 0.164 0.122 0.160 0.205
percentile features 0 7 0.089 0.089 0.079 0.098

basic features 10 30 0.185 0.139 0.156 0.220
basic features 0 30 0.185 0.139 0.154 0.220
basic features 10 7 0.174 0.103 0.175 0.205
basic features 0 7 0.174 0.103 0.175 0.205

E. Evaluation Metric

The Mean Absolute Percentage Error (MAPE) is a com-
monly used metric for time series and demand forecasting
[20], [21], [22], [23], [24]. MAPE gives more weight to large
errors, as it takes the absolute percentage difference for each
observation as shown in Equation 6 where Ai is the actual
value at time i, Fi is the forecasted value at time i, and n is
the total number of observations. This means that substantial
errors have a more significant impact on the overall MAPE,
which can be crucial for forecasting applications where large
errors are particularly costly.

MAPE =
1

n

n∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣× 100% (6)

F. Results and Discussion

In this paper, we offer a comprehensive comparative anal-
ysis of diverse feature extraction strategies within the realm
of electricity demand forecasting. Our study aims to make a
distinct contribution to the field of demand forecasting without
merely replicating minor adjustments made in previous work
by other authors.

Statistical feature extraction has been a fundamental and
widely adopted strategy in time series data analysis. In our
research, we utilize three distinct feature extraction methods,
as detailed in Section III of the paper. These methods include
”shift features,” which involves creating new features based
on past days’ data, and ”shift+date features,” which combines
features derived from shifts with date-related features. These
feature extraction techniques play a pivotal role in our ap-



TABLE V: ML model Comparison Results for Median Imputation

Feature Extraction Window Size Prev Days Data Ridge MAPE Lasso MAPE GBR MAPE SVR MAPE

shift features 10 30 0.182 0.173 0.134 0.181
shift+date features 10 30 0.182 0.173 0.134 0.181

shift features 0 30 0.182 0.173 0.134 0.181
shift+date features 0 30 0.182 0.173 0.134 0.181

shift features 10 7 0.173 0.153 0.140 0.206
shift+date features 10 7 0.174 0.154 0.137 0.214

shift features 0 7 0.065 0.065 0.064 0.119
shift+date features 0 7 0.063 0.063 0.061 0.134
percentile features 10 30 0.132 0.184 0.084 0.229
percentile features 0 30 0.136 0.136 0.136 0.147
percentile features 10 7 0.164 0.121 0.158 0.211
percentile features 0 7 0.089 0.089 0.078 0.098

basic features 10 30 0.187 0.137 0.124 0.223
basic features 0 30 0.187 0.137 0.124 0.223
basic features 10 7 0.176 0.105 0.124 0.212
basic features 0 7 0.176 0.105 0.122 0.212

TABLE VI: ML model Comparison Results for Mode Imputation

Feature Extraction Window Size Prev Days Data Ridge MAPE Lasso MAPE GBR MAPE SVR MAPE

shift features 10 30 0.186 0.176 0.139 0.183
shift+date features 10 30 0.186 0.176 0.139 0.183

shift features 0 30 0.186 0.176 0.139 0.183
shift+date features 0 30 0.186 0.176 0.139 0.183

shift features 10 7 0.177 0.157 0.144 0.209
shift+date features 10 7 0.178 0.160 0.130 0.217

shift features 0 7 0.067 0.067 0.064 0.120
shift+date features 0 7 0.065 0.065 0.062 0.136
percentile features 10 30 0.136 0.155 0.099 0.227
percentile features 0 30 0.136 0.136 0.131 0.145
percentile features 10 7 0.164 0.112 0.146 0.211
percentile features 0 7 0.091 0.091 0.079 0.097

basic features 10 30 0.187 0.130 0.159 0.230
basic features 0 30 0.187 0.130 0.159 0.230
basic features 10 7 0.177 0.103 0.133 0.213
basic features 0 7 0.177 0.103 0.136 0.213

proach to time series forecasting, enhancing our ability to
capture meaningful patterns and relationships within the data.

Our methodology proves effective by providing insights into
the pivotal features and algorithms contributing significantly to
the accurate forecasting of Maximum Demand. We incorporate
a transformation technique known as a rolling window, a
widely-used approach in time series analysis, signal process-
ing, and data analysis. The rolling window’s primary purpose
is to analyze data within a moving interval of a fixed size.
In our implementation, we set a ”window size” variable to
10, signifying a 10-day rolling window. This choice aligns
with our focus on capturing short- to medium-term trends and
patterns in the data, facilitating our analysis and forecasting
efforts.

Our approach capitalizes on historical data from preceding
days to anticipate the demand for the next day. Our results

indicate that this methodology provides a more extensive set
of features compared to forecasting the next day based solely
on the current day’s information. Instead of relying solely
on today’s data for prediction, we incorporate data from the
preceding week (7 days) and the previous month (averaging 30
days). This approach generates a dense matrix of information
that enhances the performance of all the algorithms we’ve
employed, leading to significantly more accurate forecasts.

Tables III to VII present the Mean Absolute Percentage
Error (MAPE) scores for all the machine learning models in
our analysis. These scores are provided for different feature ex-
traction processes. ”shift features” represent shift feature ex-
traction without including date-related features like month and
week. ”shift+date features” encompass shift feature extraction
with the inclusion of date features. ”percentile features” de-
note percentile feature extraction, and ”basic features” encom-



TABLE VII: ML model Comparison Results for Linear Interpolation Imputation

Feature Extraction Window Size Prev Days Data Ridge MAPE Lasso MAPE GBR MAPE SVR MAPE

shift features 10 30 0.185 0.175 0.133 0.183
shift+date features 10 30 0.185 0.175 0.133 0.183

shift features 0 30 0.185 0.175 0.133 0.183
shift+date features 0 30 0.185 0.175 0.133 0.183

shift features 10 7 0.173 0.152 0.163 0.207
shift+date features 10 7 0.175 0.154 0.143 0.216

shift features 0 7 0.061 0.061 0.060 0.119
shift+date features 0 7 0.060 0.060 0.058 0.134
percentile features 10 30 0.128 0.155 0.118 0.228
percentile features 0 30 0.136 0.136 0.137 0.147
percentile features 10 7 0.162 0.109 0.171 0.211
percentile features 0 7 0.090 0.090 0.079 0.097

basic features 10 30 0.185 0.126 0.171 0.228
basic features 0 30 0.185 0.126 0.171 0.228
basic features 10 7 0.176 0.103 0.163 0.214
basic features 0 7 0.176 0.103 0.165 0.214

Fig. 4: The Forecasted Values from the Gradient Boosted Regressor with Seven-Day Shift Features, Including Date Features,
Trained Using Linear Interpolation Imputation

pass basic feature extraction methods. These tables collectively
offer a comprehensive perspective on the performance of our
models across various feature extraction strategies. Addition-
ally, Figure 4 provides a visual representation of forecasted
values for the upcoming month, June 2023.

VI. CONCLUSION AND FUTURE WORK

Based on the above results, we have identified two models
with good MAPE scores. For further evaluation, we utilized
the Validation dataset from June 2023. The Mean Imputation
with 7 days shift, including date features, yielded a MAPE
score of 0.040, while the Linear Interpolation Imputation
with 7 days shift and date features resulted in a MAPE
score of 0.038. Therefore, we selected the Linear Interpolation
Imputation technique with 7 days of shift and date features as
the Baseline model for our future work. To enhance our fore-
casting approach, we intend to explore incorporating additional

features beyond the univariate analysis. Previous studies in
the field have showcased the significance of including a more
extensive set of features. Particularly, we are interested in ex-
ploring the application of Reinforcement Learning for Model
Selection in Time-series Forecasting. We aim to integrate data
from various ministries under the PM-Gati-Shakti Scheme in
conjunction with the Reinforcement Learning model selection
methods to improve our forecasting model further.
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