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Abstract—Advancements in medical imaging have been sub-
stantially driven by deep learning technologies, particularly
Convolutional Neural Networks (CNNs). A critical hurdle in
this domain is the imbalance of datasets, where certain medical
conditions are underrepresented, leading to potential biases in
diagnostic models. This research addresses the imbalance in
medical imaging datasets, specifically in chest radiography, by
leveraging Generative Adversarial Networks (GANs) for data
augmentation. The study utilizes the ChestXray2017 dataset,
which is skewed towards pneumonia cases, resulting in a dearth
of normal chest X-ray images. To counter this, Deep Convolution
Generative Adversarial Networks (DCGAN) were employed to
generate synthetic images of normal chest X-rays, thus aiming
to balance the dataset.

In this study, we conducted a comparative analysis of a Convo-
lutional Neural Network’s (CNN) performance on a chest radio-
graphy dataset, before and after augmenting it with Deep Con-
volution Generative Adversarial Network (DCGAN)-generated
images. Initially, the CNN trained on the un-augmented dataset
achieved 93% training accuracy and 87% validation accuracy.
After integrating 400 synthetic normal chest X-ray images, the
training accuracy slightly increased to 95%, while the validation
accuracy notably improved to 89%. This enhancement in valida-
tion accuracy demonstrates the model’s improved generalization
capabilities due to a more balanced training dataset. Our results
indicate that GAN-based data augmentation effectively addresses
class imbalances in medical imaging datasets, potentially leading
to more accurate and reliable diagnostic models. However, the
study also underscores the need for further research into the
quality and ethical implications of using synthetic images in
medical diagnostics. Overall, the integration of GAN-generated
images into CNN training presents a promising method for
improving classification performance in medical imaging, offering
a practical approach to overcome challenges associated with data
scarcity and imbalance.

Index Terms—Generative AI, Generative Adversarial Net-
works (GANs), Convolution Neural Networks (CNNs), Deep
Learning.

I. INTRODUCTION

In recent years, the landscape of medical diagnostics has
been revolutionized by advancements in artificial intelligence,
particularly through the application of deep learning tech-
niques in medical imaging [1]. Among these techniques,
Convolutional Neural Networks (CNNs) have emerged as a

cornerstone, offering substantial improvements in the accuracy
of disease detection and classification from medical images.
Despite these advancements, the field faces a significant chal-
lenge: the imbalance in medical imaging datasets. This issue
arises when certain medical conditions are underrepresented
in available datasets, often due to their rarity or the logistical
challenges in collecting sufficient data [2]. Such imbalances
can lead to diagnostic models that are biased or less accurate,
potentially compromising their utility in clinical decision-
making.

This research paper delves into this prevalent issue within
the context of chest radiography. The imbalance in medical
imaging datasets, particularly in the case of chest X-rays,
can be a substantial barrier to developing robust and reli-
able diagnostic tools. To address this, our study focuses on
the application of Generative Adversarial Networks (GANs),
specifically Deep Convolution Generative Adversarial Net-
works (DCGAN), to augment existing datasets. We utilize the
ChestXray2017 dataset [3], an extensive collection of chest
radiograph images, which, like many medical datasets, suffers
from an imbalance—predominantly featuring pneumonia cases
at the expense of ’normal’ cases. Our approach involves
generating synthetic but realistic images of normal chest
X-rays using DCGAN, which are then integrated into the
original dataset. This process aims to create a more balanced
distribution of cases, potentially enhancing the accuracy and
reliability of CNN-based diagnostic models.

Our research conducts an in-depth comparative analysis,
examining the impact of this data augmentation on the per-
formance of a CNN model. Initially, the model trained on
the original, un-augmented dataset demonstrated solid per-
formance metrics. However, upon integrating the DCGAN-
generated synthetic images, we observed a marked improve-
ment in both training and validation accuracies. This suggests
that the augmented dataset not only offers a more balanced
representation of conditions but also enhances the model’s
ability to generalize and accurately classify unseen data.

The results of our study highlight the significant poten-
tial of employing GAN-based synthetic data augmentation



to mitigate class imbalances in medical imaging datasets.
Such an approach is particularly relevant in the realm of
medical diagnostics, where the acquisition of large, diverse,
and balanced datasets can be inherently challenging. While
our findings are promising, they also pave the way for further
investigations into the quality, realism, and ethical implica-
tions of utilizing synthetic images in medical diagnostics. In
summary, this paper presents a comprehensive analysis of
integrating GAN-generated images into CNN training regimes,
exploring its feasibility and effectiveness in enhancing the
performance of medical image classification, especially in
scenarios characterized by data scarcity and class imbalance.

II. RELATED WORK

Data augmentation is a crucial aspect of training discrim-
inative Convolutional Neural Networks (CNNs). A study by
Hussain et al. (2017) compared various augmentation strate-
gies like horizontal flips, random crops, and principal com-
ponent analysis (PCA) in the context of medical imaging [4].
Their findings revealed that the effectiveness of augmentation
strategies, such as flips and gaussian filters, was significantly
higher compared to less effective strategies like adding noise.
This work emphasized the importance of choosing the right
augmentation strategy to retain the properties of the original
medical images, thereby affecting both discriminative and
generative performance of the models.

Shin et al. (2018) proposed a generative adversarial
network-based method to create synthetic abnormal brain MRI
images, addressing the challenge of imbalanced datasets in
medical imaging [5]. Their approach not only improved tumor
segmentation performance but also served as an anonymization
tool, allowing for data sharing while maintaining privacy. This
study highlights the dual benefits of synthetic images in en-
hancing model performance and ensuring data confidentiality.

Mikołajczyk and Grochowski (2018) explored various data
augmentation methods, including classical image transforma-
tions and advanced techniques like Style Transfer and Gen-
erative Adversarial Networks [6]. Their research focused on
the impact of these methods on improving deep learning al-
gorithms, particularly in medical imaging contexts where data
scarcity is a common issue. The study provided insights into
the potential of combining traditional and novel augmentation
methods to enhance the efficiency of deep neural networks.

Generative Adversarial Networks (GANs) have become a
cornerstone in the field of medical image analysis. Their ability
to synthesize images with high levels of realism offers a
solution to the chronic scarcity of labeled data in medical
imaging. In their review, Kazeminia et al. (2020) provide
a comprehensive overview of GAN applications in medical
imaging, discussing their potential in tasks such as de-noising,
reconstruction, segmentation, and classification [7].

Super-resolution using GANs presents a novel approach to
enhancing the quality of medical images. Gupta et al. (2020)
demonstrated the effectiveness of GANs in improving the
resolution of MRI scans. Their method outperformed standard

deep learning models, producing higher resolution images that
closely resemble the target scans [8].

Additionally, the application of multi-scale GANs for gen-
erating high-resolution medical images has shown promising
results. Uzunova et al. (2019) introduced a novel approach for
generating large 2D and 3D medical images. Their method
addresses the computational demands typically associated with
high-resolution image generation, offering a scalable and effi-
cient solution [9].

The evolution of Convolutional Neural Networks (CNNs)
has revolutionized the field of medical image analysis. In
their survey, Sarvamangala and Kulkarni (2022) provide an
in-depth look at the applications of CNNs in medical image
understanding [10]. This survey emphasizes the effectiveness
of CNNs in various tasks such as image classification, segmen-
tation, localization, and detection, particularly in the context
of medical imaging for ailments of the brain, breast, lung, and
other organs.

The integration of Generative Adversarial Networks (GANs)
with Convolutional Neural Networks (CNNs) has shown sig-
nificant promise in medical image analysis. Frid-Adar et al.
(2018) demonstrated the effectiveness of GAN-based synthetic
medical image augmentation in improving CNN performance
for liver lesion classification [11]. Their approach involved
synthesizing high-quality liver lesion regions of interest (ROIs)
using GAN architectures and subsequently enhancing the
classification accuracy of a CNN model through synthetic data
augmentation.

In another study, Talukdar et al. (2022) employed DCGAN
and CNN transfer learning techniques for classifying medical
X-ray images [12]. They observed an improvement in the
accuracy of various CNN models, including custom CNN
and popular architectures like InceptionV3, ResNet50, and
VGG16, after incorporating GAN-generated training data.

Furthermore, Bali and Mahara (2023) compared affine and
DCGAN-based data augmentation techniques for chest X-ray
classification [13]. Their findings indicated that DCGAN not
only outperformed traditional models in accuracy and recall
but was also capable of identifying fake images with high
precision, highlighting its potential in medical diagnostics.

III. PROPOSED METHODOLOGY

In this paper, our methodology adheres to the framework
illustrated in Fig. 1, We initiate our investigation by utilizing
the original dataset, where our initial focus is on assessing
the presence of a class imbalance problem. To address this
imbalance, we employ a training strategy involving a DCGAN.
Specifically, our approach involves training the minority class
with DCGAN to generate synthetic images within the same
class.

The Generator trained through the DCGAN is employed
to generate additional images within the same class, thereby
augmenting the dataset. This augmented dataset encompasses a
larger number of samples compared to the original dataset. The
expanded dataset, enriched through the generative capabilities
of the DCGAN, serves as a valuable resource for training



Fig. 1: Proposed Methodology

image classification models such as Convolutional Neural
Networks (CNN). By incorporating these augmented samples,
we aim to enhance the model’s ability to learn diverse features
and patterns, ultimately contributing to improved performance
and generalization in the image classification task.

A. Datasets

TABLE I: Data Distribution of ChestX-ray2017 dataset

Dataset Number of Samples
Train-Normal 1349

Train-Pneumonia 3883
Test-Normal 234

Test-Pneumonia 390

This research leverages the comprehensive ChestXray-2017
dataset, as referenced in [3]. The dataset is meticulously
curated and encompasses two vital classes: Normal and
Pneumonia. Within this dataset, each sample is meticulously
captured through the lens of computed tomography (CT)
scans, providing a detailed exploration of lung images. These
CT scans serve as the foundational basis for our in-depth
analysis, offering a rich and diverse set of medical imagery
for investigation.

In Fig. 2 and 3, we present a visual representation of the
CT images corresponding to the two distinctive labels, Normal
and Pneumonia. These images offer a firsthand glimpse into
the intricate details of pulmonary conditions. Notably, Fig.
2 provides a clear depiction of the CT images without col-
ormaps, allowing for an unaltered representation of the raw
data. In contrast, Fig. 3 introduces colormaps to the CT im-
ages, enhancing visual interpretation and emphasizing specific
features within the lung scans. This comparison facilitates a
comprehensive understanding of the dataset and contributes to
the nuanced exploration of medical imaging in the context of
chest radiography.

Table 1 illustrates the distribution of the dataset, revealing
a notable disparity in counts between the Pneumonia and
Normal classes. Here, we designate the Normal CT samples

as the minority class, while considering the Pneumonia CT
samples as the majority class.

B. DCGAN

Generative Adversarial Networks (GANs) [14] find exten-
sive applications in various domains, including text, audio,
and data generation, enabling the creation of novel datasets.
However, when confronted with high-dimensional data such as
images, GANs encounter challenges in training and struggle
to extract meaningful features essential for generating realistic
fake images. To address this limitation, Deep Convolutional
Generative Adversarial Networks (DCGANs) [15] are em-
ployed to enhance the training process and facilitate the
extraction of relevant features, particularly in the context of
image generation. DCGAN (Deep Convolutional Generative
Adversarial Network) is a type of generative adversarial net-
work (GAN) that uses convolutional neural networks (CNNs)
in both the generator and discriminator networks. It is a
powerful generative model capable of generating high-quality
images from random noise.

The generator network in DCGAN is responsible for cre-
ating fake images from random noise. It consists of a series
of transposed convolutional layers, also known as deconvo-
lutional layers, that gradually upsample the input noise to
the desired image size. Each transposed convolutional layer is
followed by a batch normalization layer and a ReLU activation
function. The final layer is a convolutional layer with a tanh
activation function, which outputs the generated image. The
discriminator network in DCGAN is responsible for distin-
guishing between real images and fake images generated by
the generator network. It consists of a series of convolutional
layers, each followed by a batch normalization layer and a
Leaky ReLU activation function. The final layer is a fully
connected layer with a sigmoid activation function, which
outputs a probability score indicating the likelihood that the
input image is real.

The generator and discriminator networks in DCGAN are
trained simultaneously in an adversarial manner. The generator



(a) Normal Lung (b) Pneumonia Lung

Fig. 2: Data Samples for Pneumonia Classification Dataset

(a) Normal Lungs (b) Pneumonia Lungs

Fig. 3: Data Samples using Colormaps (nipy spectral) for Pneumonia Classification Dataset

network tries to generate fake images that are indistinguishable
from real images, while the discriminator network tries to
distinguish between real and fake images. This adversarial
training process results in the generator network learning to
produce high-quality images that are realistic and visually
appealing.

First we update the discriminator with the real batch once
the Gradients are calculated we calculate the loss D x now, we
make the generator to generate a fake batch of Images which
is then passed over discriminator

Let z be a latent space vector sampled from a standard
normal distribution. The generator function G(z) maps z to
data-space. The goal of G is to estimate the distribution that
the training data comes from (pdata), generating samples from
the estimated distribution (pg).

The discriminator D(G(z)) computes the probability
(scalar) that the output of the generator G is a real image. In

the minimax game described by Goodfellow, the discriminator
D seeks to maximize the probability of correctly classifying
real and fake samples (logD(x)), while the generator G aims
to minimize the probability that D predicts its outputs as fake
(log(1−D(G(z)))).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Our study utilized the ChestXray2017 dataset [3], which
consists of two classes: pneumonia and normal. We observed
a significant class imbalance, with a lower number of normal
chest X-ray images. To address this, we synthesized 400
normal chest X-ray images using DCGAN and integrated them
into the dataset to balance the class distribution and improve
the CNN’s performance.

The primary focus of our study was to train the DCGAN on
the minority class, i.e., Normal Images. The dynamics of this
adversarial training process are illustrated in Fig. 6, where we
observe the fluctuating loss values for both the generator and



Fig. 4: Deep Convolution Generative Adversarial Network (DCGAN)

(a) Generated Normal Lungs image using GAN (b) Colormap of Generated Normal Lungs image using GAN

Fig. 5: Generated new Data Samples using DCGAN

discriminator. These oscillations are typical of GAN training,
indicating the generator’s improvement in creating realistic
images and the discriminator’s refinement in distinguishing
real from synthetic images.

TABLE II: Comparison of Model Performance Before and
After Augmentation

Metric Before Augmentation After Augmentation

Training Accuracy 93.2% 95%
Validation Accuracy 87.1% 89.3%
Precision 0.84 0.87
Recall 0.97 0.98

Table II illustrates the enhancements in the performance of
a CNN model for medical imaging diagnostics after incorpo-
rating synthetic images via GAN-based data augmentation.

The augmentation led to notable improvements across all
evaluated metrics: training accuracy increased from 93.2%

to 95%, and validation accuracy rose from 87.1% to 89.3%.
Additionally, precision and recall saw improvements, moving
from 0.84 to 0.87 and from 0.97 to 0.98, respectively. These
results underscore the effectiveness of utilizing synthetic data
to balance datasets, which in turn enhances the model’s accu-
racy in diagnosing medical conditions, reduces false positives,
and improves its ability to identify true positive cases.

Fig. 7 displays the CNN model’s accuracy and loss over
epochs without GAN-based data augmentation, with the left
plot for accuracy and the right plot for loss. Finally, Fig. 8 pro-
vides a comprehensive view of the CNN model’s performance
with GAN-based data augmentation.

These results demonstrate the effectiveness of GAN-based
synthetic data augmentation in addressing class imbalances in
medical imaging datasets. The improved validation accuracy
indicates enhanced learning of discriminative features by the
CNN model. However, the quality and ethical implications of
using synthetic images warrant further investigation.



Fig. 6: Generator and Discriminator Loss During Training. This plot tracks the loss of both the generator (in blue) and the
discriminator (in orange) across 150 epochs, reflecting the ongoing learning and adaptation within the GAN framework.

Fig. 7: Model Accuracy and Loss Over Epochs for a CNN Model Without Data Augmentation via GAN.

Fig. 8: Model Accuracy and Loss Over Epochs for a CNN Model With Data Augmentation via GAN.



In conclusion, integrating GAN-generated images into CNN
training appears to be a viable strategy for enhancing clas-
sification performance in medical imaging, particularly in
scenarios with data scarcity and imbalance.

V. CONCLUSION AND FUTURE WORK

This research has successfully demonstrated the poten-
tial of Deep Convolution Generative Adversarial Network
(DCGAN)-generated synthetic images in enhancing the perfor-
mance of Convolutional Neural Networks (CNNs) for medical
image classification. By incorporating artificially generated
normal chest X-ray images into the ChestXray2017 dataset, we
achieved a notable increase in the CNN’s validation accuracy,
from 87% to 89%. This enhancement highlights the viability
of synthetic data augmentation as a solution to the prevalent
issue of imbalanced datasets in medical imaging.

The utilization of DCGANs to generate supplementary
training data represents a significant stride towards improving
the generalizability and accuracy of CNN models in medical
diagnostics. Addressing dataset imbalance through this method
is a key step in advancing the development of reliable and
precise diagnostic tools in healthcare.

Looking ahead, our research opens avenues for investigating
various GAN architectures and their impact on CNN per-
formance, along with a rigorous analysis of the quality and
realism of synthetic images. Ethical considerations and the
expansion of this approach to other imaging modalities, such
as MRI or ultrasound, are also crucial. Conducting clinical
trials will be essential for evaluating the practical effectiveness
of CNN models trained with synthetic data augmentation in
real-world medical diagnostics.
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