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Abstract—The escalating prevalence of Android malware poses
a substantial threat to online security, necessitating innovative
approaches to combat this growing menace. Identifying novel
and intricate malware variants remains a formidable challenge
in the realm of software security. Existing malware detection
methods primarily relying on static features often prove in-
adequate in countering sophisticated modern malware. While
dynamic detection methods hold promise, they frequently fail to
leverage the full spectrum of malware characteristics. This paper
proposes a novel malware classification framework utilizing semi-
supervised learning methods utilizing both unsupervised and
supervised learning algorithms. We use the CCCS-CIC-AndMal-
2020 dataset encompassing 13 prominent malware categories
and 191 eminent malware families. Our results suggested that
PCA+XGBoost accomplished by reducing the original dimen-
sionality from 142 features to a more compact set of 48 features.
The utilization of PCA in conjunction with the XGBoost model
not only enhances the computational efficiency but also preserves
the essential information required for classification.

Index Terms—Machine Learning, Security, Reverse Engineer-
ing, Malware Analysis

I. INTRODUCTION

The escalating bulk of Android malware poses a substantial
threat to online security, necessitating innovative approaches
to combat this growing menace. Malicious software adversely
affects systems by compromising the integrity, confidentiality,
and availability of data on Android devices. This impact in-
cludes unauthorized access, data breaches, financial losses, and
potential harm to sensitive personal information. Cybersecurity
statistics underline the urgency of addressing these threats,
with an increase in cyberattacks annually, growing financial
losses due to cybercrime, and the rising sophistication of attack
vectors. Palo Alto Netork reports [1] suggest a rise in tradi-
tional malware techniques exploiting interest in AI/ChatGPT
and an increase in vulnerabilities by 55% compared to 2021.

Identifying novel and intricate malware variants remains
a formidable challenge in the realm of software security.
Existing malware detection methods, primarily relying on
static features, often prove inadequate in countering sophis-
ticated modern malware. Reverse engineering and dynamic
analysis play crucial roles in this context. Reverse engineering
is essential to understanding malware behavior, capabilities,
and vulnerabilities. Dynamic analysis, involving the execution
of malware within a controlled environment, is necessary to

observe real-time behavior, as static analysis alone may prove
insufficient. The deceptive nature of Android malware, often
distributed through malicious Android Package (APK) files,
underscores the need for these techniques.

In malware detection for Android apps, research was con-
ducted by Urooj et al [2], achieving a 96.24% accuracy using
machine learning and static features. While notable, limitations
are acknowledged in the study, such as a lack of dynamic
features, and challenges in sustaining models amid app ad-
vancements are highlighted. Megira et al [11], focusing on
Android malware. Employing a stacking-based classification
approach, the authors analyze host-level encrypted traffic,
machine learning-based detection, and PAM clustering for
Android malware. The goal is to understand infection mecha-
nisms, assess threat levels, and enhance protection. Leveraging
static and dynamic analysis alongside reverse engineering
methods like assembly and debugging, the study concludes
that combining these techniques yields more accurate results
for malware analysis.

This paper contributes to the cybersecurity landscape by
proposing an innovative malware classification framework. By
addressing the impact of malware on systems, providing rel-
evant cybersecurity statistics, emphasizing the importance of
reverse engineering and dynamic analysis, and contextualizing
the challenges posed by Android malware and APKs, the
paper strives to enhance our understanding and mitigation
of the escalating threat of Android malware. The structure
of the remaining paper is outlined as follows: Section II
reviews related works in the field. Section III details the
design of the proposed methodology. Section IV provides an
in-depth explanation of the algorithm utilized in our approach.
The experiments and corresponding results will be presented
in Section V. Section VI addresses research challenges and
outlines conclusions for future directions.

II. RELATED WORK

Several works have been done to analyze and detect mal-
ware. Burji et al. [3] employed reverse engineering and data
mining techniques on the Nugache worm, extracting behav-
ioral patterns from 49 malware samples. Their study advocates
for the use of rough set-based machine learning tools to es-
tablish distinctive patterns for malware detection. Emphasizing



Fig. 1: The Proposed Methodology for the Semi-supervised Algorithms

the effectiveness of these tools, the research underscores the
importance of integrating them with current security solutions
for practical application in everyday computing scenarios. Jain
et al. [4] utilized reverse engineering and SVM for hardware
trojan detection in integrated circuits (ICs), achieving superior
performance with the Radial kernel. Despite challenges like
unknown trojan-free ICs, their study demonstrates SVM’s ef-
ficacy in identifying trojan-infected ICs, particularly proficient
in detecting small trojans with increased accuracy. Tsague
et al [5] side-channel analysis for smart card malware code
recovery, employing dimensionality reduction (PCA, LDA)
and machine learning. Achieving an 87.40% recognition rate,
challenges included real-world recognition (62%) and the
need for improved tools. That side channel-based reverse
engineering is practical, proposing a valuable disassembler for
embedded systems. Rathore et al. [6] applied machine learning
and deep learning techniques, focusing on opcode frequency
as a feature vector. Despite the complexity of the dataset,
Random Forest outperformed Deep Neural Network with a
remarkable 99.7% accuracy, showcasing the effectiveness of
their approach in treating malware analysis as a machine
learning problem.

Poudyal et al. [7] developed a reverse engineering frame-
work integrated with feature generation engines and machine
learning (ML) to proficiently identify ransomware. Their
methodology, validated on a dataset of 302 malware samples,
employed reverse engineering and preprocessing techniques to
extract features from ransomware and normal binaries. Across
various datasets, experiments revealed detection accuracies
ranging from 76% to 97% across different supervised machine-
learning algorithms. With over 90% accuracy for seven out of
eight classifiers tested, their model highlights the significance
of static analysis in discerning ransomware characteristics for
effective machine learning-based detection. Cappers et al. [8]
introduce EventPad, a visual analytics tool for swift malware
analysis, demonstrating its efficacy in network traffic analysis
and ransomware detection using real-world datasets. Despite
challenges like the ”cold start” problem, EventPad’s integra-

tion of data reduction, visualization techniques, and rule-based
analysis provides quick insights, supporting rapid and cost-
effective malware analysis. Pfeffer et al. [9] introduce MAAGI,
employing reverse engineering and semantic analysis for mal-
ware lineage determination. Their methodology, validated with
140 malware samples, achieves a precision-recall F-measure of
73% on GitHub data and 92% on malware data, demonstrating
promise but necessitating further refinement and evaluation.
Nguyen et al. [10] introduce the MARE methodology and
M.D. timeline, offering a structured framework for malware
analysis. MARE includes phases like Detection, Isolation &
Extraction, Behavior Analysis, and Code Analysis & Reverse
Engineering, facilitating systematic analysis. Emphasizing its
utility in legal and educational contexts, the authors envision
its formalization as admissible evidence. The M.D. timeline,
comprising six phases from Detection to Malware Inoculation,
aims to enhance understanding and defense against malware
threats.

III. PROPOSED METHODOLOGY

The proposed methodology, depicted in Fig. 1, employs
a semi-supervised learning approach that utilizes unsuper-
vised algorithms for dimensionality reduction followed by
supervised learning algorithms for malware classification. The
dataset encompasses a thorough dynamic analysis of each
malware instance, executed within an emulated environment.
For feature extraction, Rahali et al. [12] employed reverse
engineering on the .apk files using apktool [13] where the
static features were extracted from the AndroidManifest.xml
file. Keyes et al. [14] explored the Dynamic Feature Extraction
and observed the limitations of static analysis in detecting
malware triggered by specific runtime environments. We use
the dataset but we classify the malware categories. The Deci-
sion Tree algorithm demonstrates superior performance with
sparse matrices, outperforming both Naive Bayes and Ran-
dom Forest classification methods. By intentionally pruning
Decision Trees to prevent overfitting, we make them easy
to understand, possibly revealing new aspects of malware



Fig. 2: Malware Categorical Distribution in the Combined
Dataset

evolution. This paper proposes an novel semi-supervised al-
gorithm using unsupervised and supevised algorithms. This
approach helps to overcome the difficulties posed by sparse
matrices in other non-interpretable algorithms like Ensemble
based learning methods. Sparse matrices may not function
effectively with neural networks, especially when the deep
learning frameworks lack optimization for sparse computa-
tions. Therefore, we adopt the semi-supervised approach to
improve the performance of malware classification.

Given the sparsity of the feature space, unsupervised al-
gorithms like Principle Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Self-Organizing Maps
(SOM) and t-Distributed Stochastic Neighbor Embedding (t-
SNE) are used for dimensionality reduction. These techniques
aim to transform the high-dimensional feature space into a
lower-dimensional representation while preserving the essen-
tial information. Due to the sparse nature of the data, these
unsupervised algorithms are often more suitable than neural
networks or other algorithms that may not be optimized for
such computations. After dimensionality reduction, supervised
learning algorithms are applied to classify malware samples.
The primary supervised learning algorithms used in this study
include logistic regression, XGBoost, CatBoost, and support
vector machines (SVMs). These algorithms are selected for
their effectiveness in malware classification and their ability to
handle high-dimensional data. Extreme hyperparameter tuning
is performed to optimize the performance of the supervised
learning algorithms. Hyperparameters are the parameters of
the learning algorithm that govern the learning process, such
as the learning rate and the number of iterations. By tuning
these hyperparameters, the performance of the classification
models can be significantly improved.

A. Datasets

We utilize the CCCS-CIC-AndMal-2020 dataset [15] for
conducting semi-supervised learning on the dynamic analysis
dataset of Android malwares. To understand the behavioral
variations within different malware categories and families,
we extract six categories of features by executing malware
within an emulated environment. The primary extracted fea-
tures encompass API calls, Memory, Network, Battery, Logcat
(capturing log messages corresponding to malware functions),
and process feature counts. The dataset comprises a compre-
hensive range of 13 distinct categories of malware families,
encompassing Adware, Backdoor, File Infector, Potentially
Unwanted Application (PUA), Ransomware, Riskware, Scare-
ware, Trojan, Trojan Banker, Trojan Dropper, Trojan SMS,
Trojan Spy, and Zero Day. These categories are observed in
the dataset both before and after reboot. The data files were
consolidated to form a combined dataset comprising 27,332
rows and 142 columns and the distribution of samples in each
category is shown in the Fig. 2.

B. Algorithms Used

Our methodology integrates both unsupervised and super-
vised algorithms, as outlined in the methodology section.
Unsupervised algorithms operate without relying on labeled
data. In our approach, we leverage these algorithms primarily
for dimensionality reduction purposes. Acknowledging the
potential information loss during this process, our aim is to
minimize such loss and achieve a compact representation of
the data. Specifically, this study employs PCA, ICA, SOM, and
t-SNE algorithm for unsupervised dimensionality reduction,
aiming to transform data into uncorrelated variables that cap-
ture the maximum variance. For classification tasks, we utilize
supervised algorithms, including Logistic Regression, XG-
Boost, CatBoost, and Support Vector Machines (SVM), par-
ticularly considering the clustering patterns identified through
the unsupervised techniques.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we delve into the outcomes obtained by
our proposed methodology applied to the Android malware
dataset. Firstly, we present the results achieved by unsu-
pervised learning algorithms, demonstrating their ability to
uncover inherent structures and patterns within the data. Sub-
sequently, we evaluate the performance of supervised learn-
ing algorithms, establishing baseline models for our dataset.
All experiments were conducted utilizing the comprehensive
sklearn-package [16], a robust and widely-adopted machine
learning library.

In constructing the dataset, all datasets except
”No Category” were merged row-wise, excluding instances
without manual classification. To encode the categorical
variables, label encoding was employed, transforming the
13 class labels into numerical representations ranging from
0 to 12. This dataset was subjected to four supervised
learning algorithms and the selection of these algorithms
was guided by their distinct working principles and proven



Class (Encoded) F1 Score for PCA F1 Score for t-SNE F1 Score for ICA F1 Score for SOM
PUA 0.0 0.0 0.0 0.1765
Adware 0.3086 0.4277 0.4103 0.5905
Backdoor 0.0 0.0382 0.0 0.1503
FileInfector 0.0 0.0 0.0 0.0625
Ransomware 0.0 0.4151 0.4928 0.5729
Riskware 0.4173 0.5988 0.5141 0.6824
Scareware 0.0 0.1322 0.3194 0.6267
Trojan 0.2201 0.4023 0.4325 0.5327
Trojan Banker 0.0 0.0 0.0 0.0
Trojan Dropper 0.0 0.0614 0.0 0.2517
Trojan SMS 0.0 0.1511 0.0 0.3289
Trojan Spy 0.0 0.1727 0.3394 0.6894
Zero Day 0.0 0.0508 0.0 0.1252
Overall Accuracy 0.29 0.40 0.40 0.56

TABLE I: F1 Scores for Each Class (Logistic Regression)

Class (Encoded) F1 Score for PCA F1 Score for t-SNE F1 Score for ICA F1 Score for SOM
PUA 0.7881 0.6620 0.7797 0.4192

Adware 0.8314 0.7506 0.8233 0.5990
Backdoor 0.7356 0.6113 0.7444 0.3855

FileInfector 0.56 0.3265 0.5714 0.2128
Ransomware 0.8142 0.7777 0.8110 0.6486

Riskware 0.8584 0.8047 0.8594 0.7132
Scareware 0.7879 0.7042 0.7964 0.4638

Trojan 0.8339 0.7653 0.8337 0.6351
Trojan Banker 0.5714 0.5283 0.5098 0.1111
Trojan Dropper 0.6799 0.5978 0.6331 0.4879

Trojan SMS 0.7093 0.5897 0.7347 0.4344
Trojan Spy 0.8874 0.8523 0.8825 0.7006
Zero Day 0.5338 0.4413 0.5479 0.2748

Overall Accuracy 0.81 0.73 0.80 0.60

TABLE II: F1 Scores for Each Class (XGBoost)

Class (Encoded) F1 Score for PCA F1 Score for t-SNE F1 Score for ICA F1 Score for SOM
PUA 0.7080 0.5397 0.6906 0.3347
Adware 0.7910 0.6911 0.7980 0.5757
Backdoor 0.6527 0.4843 0.6527 0.3333
FileInfector 0.3158 0.1176 0.2632 0.0000
Ransomware 0.8033 0.7346 0.8105 0.6367
Riskware 0.8350 0.7750 0.8386 0.6637
Scareware 0.7788 0.5571 0.8000 0.4505
Trojan 0.8268 0.7211 0.8267 0.5781
Trojan Banker 0.5455 0.3500 0.6250 0.0000
Trojan Dropper 0.6528 0.5209 0.6726 0.4518
Trojan SMS 0.6667 0.4253 0.6860 0.3392
Trojan Spy 0.8930 0.7922 0.8957 0.6929
Zero Day 0.5317 0.3673 0.5301 0.2693
Overall Accuracy 0.79 0.68 0.79 0.57

TABLE III: F1 Scores for Each Class (CatBoost)

ability to accurately classify data, as demonstrated in prior
research. Among these algorithms, XGBoost, an ensemble
learning algorithm, emerged as the most capable, achieving a
remarkable accuracy rate of 76% (0.76). Given its superior
performance, XGBoost was adopted as the benchmark metric
for subsequent exploration into dimensionality reduction
techniques.

Fig. 3, illustrates the convergence graphs pertaining to
the Unsupervised learning methods for Principal Component
Analysis (PCA), elucidating the relationships with the asso-
ciated hyperparameters. Through our analysis, we observed
that employing PCA directly onto the algorithm resulted in
lower accuracy and greater loss of information. In response to
this finding, we introduce a novel feature-wise dimensionality

reduction technique designed to incrementally enhance accu-
racy on a per-feature basis. Our proposed approach involves
partitioning the entire dataset vertically into three distinct
categories: Memory features, API features, and Other features.
Subsequently, we apply three distinct unsupervised algorithms
for dimensionality reduction tailored to each feature category.
This innovative methodology aims to capitalize on the unique
characteristics of each feature subset, fostering a more nuanced
and accurate representation of the underlying patterns within
the data. Through this nuanced approach, we anticipate achiev-
ing improved accuracy and information retention compared to
conventional techniques, ultimately enhancing the overall per-
formance of the XGBoost classification model. PCA emerges
as the most effective dimensionality reduction technique,



Class (Encoded) F1 Score for PCA F1 Score for t-SNE F1 Score for ICA F1 Score for SOM
PUA 0.0 0.4564 0.4262 0.0
Adware 0.4732 0.5746 0.6384 0.3831
Backdoor 0.0 0.1078 0.2373 0.0
FileInfector 0.0 0.0 0.0 0.0
Ransomware 0.5659 0.6764 0.6925 0.4181
Riskware 0.6514 0.7076 0.7482 0.4897
Scareware 0.4568 0.4222 0.6533 0.3955
Trojan 0.5238 0.6175 0.6808 0.3356
Trojan Banker 0.0 0.0 0.0 0.0
Trojan Dropper 0.1416 0.3776 0.5153 0.0
Trojan SMS 0.1286 0.3732 0.3835 0.0
Trojan Spy 0.6882 0.6124 0.7702 0.2321
Zero Day 0.1064 0.1493 0.2914 0.0713
Overall Accuracy 0.51 0.58 0.65 0.38

TABLE IV: F1 Scores for Each Class (SVM - Radial Basis kernel)

(a) PCA with whole features (142) (b) PCA with only Memory features

(c) PCA with only API features (d) PCA with other features

Fig. 3: Dimensionality Reduction Convergence graphs with XGBoost Algorithm

achieving the highest accuracy of 81% when integrated with
the XGBoost model. This notable success is accomplished
by reducing the original dimensionality from 142 features to
a more compact set of 48 features. The utilization of PCA
in conjunction with the XGBoost model not only enhances
the computational efficiency but also preserves the essential
information required for accurate classification. This result
underscores the efficacy of PCA in optimizing the performance
of machine learning models, particularly when employed in
tandem with sophisticated algorithms like XGBoost.

In the subsequent phase of our analysis, we applied super-

vised learning algorithms to our finely tuned dimensionality
reduction models. Tables 1, 2, 3, and 4 present a compre-
hensive breakdown of class-wise results attained by the four
supervised algorithms, with the boosting ensemble learning
model demonstrating the highest accuracy. This observation
reinforces the efficacy of ensemble learning, specifically boost-
ing, in enhancing classification performance across diverse
classes. Additionally, Fig. 4, provides a visual representation
of the confusion matrix for each class obtained through the
semi-supervised algorithm, offering insights into the model’s
performance and potential areas for refinement.



Fig. 4: Confusion matrix for the Semi-supervised
PCA+XGBoost model

V. CONCLUSION AND FUTURE WORK

The landscape of malware detection continues to evolve
as researchers grapple with the challenges posed by vast and
intricate dimensional datasets. The CCCS-CIC-AndMal-2020
Reverse Engineered static Android malware dataset stands out
with nearly 9000 features, a complexity that proves challeng-
ing for traditional models such as XGBoost and Logistic Re-
gression. In contrast, Deep Neural Networks and Transformer
models exhibit promising capabilities in handling such high-
dimensional data. Harnessing the full potential of advanced
neural network architectures such as those incorporating self-
attention layers and transformers necessitates comprehensive
fine-tuning, particularly in the context of multi-label classifica-
tion tasks. This fine-tuning process is essential to optimize the
model’s performance and ensure its effectiveness in accurately
classifying malware samples. The intricacies of understanding
and effectively utilizing models with high intent underscore
the ongoing need for sophisticated approaches in the field of
malware detection research.We plan to integrate self-attention
layers and transformers into our neural network architectures,
aiming to elevate the accuracy of malware classification.
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